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ABSTRACT
The process of performance tuning is time consuming and
costly even if it is carried out automatically. It is crucial to
learn from the experience of experts. Our long-term goal is
to construct a database of facts extracted from specific per-
formance tuning histories of computation-intensive applica-
tions such that we can search the database for promising
optimization patterns that fit a given kernel.

In this study, as a significant step toward our goal, we
explored a thousand computation-intensive applications in
terms of the distribution of kernel classes, each of which is re-
lated to expected efficiency and specific tuning patterns. To
statistically estimate the distribution of the kernel classes,
100 loops were randomly sampled and then manually clas-
sified by experienced performance engineers. The result in-
dicates that 50–70% of the kernels are memory-bound and
hence difficult to run efficiently on modern scalar proces-
sors. In addition, based on the classification results, we
constructed experimental classifiers for identifying loop ker-
nels and for predicting kernel classes, which achieved cross-
validated classification accuracy of 81% and 65%, respec-
tively.

Keywords
Software performance tuning; computation-intensive appli-
cation; kernel classification; kernel prediction; Fortran parser

1. INTRODUCTION
For scientists that conduct large-scale computations on

supercomputers, application performance tuning is essential
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to maximizing their scientific results. To improve the per-
formance of an application, we have to identify its compu-
tational kernels, each of which is typically composed of one
or more loops. Then various empirical attempts are made
to achieve a high percentage of the theoretical peak perfor-
mance of the given computing system; attempts to change
compiler options, to adjust program parameters, or even
to transform the programs in a semantics-preserving man-
ner are repeated until sufficient simulated time/resolution
and sufficient accuracy of the physical models/algorithms
are achieved [3].

While performance tuning is still a demanding manual
task relying on experience and intuition in general, a num-
ber of studies on auto-tuning systems are conducted for some
specific kernels such as stencil code, linear algebra solvers,
and matrix multiplications [4], or even full applications [21].
However, the process of performance tuning is time con-
suming and costly even if it is carried out automatically.
Since auto-tuning systems rely on empirical techniques that
evaluate possible parameters and/or implementations of a
computational kernel to spot the best one in an automated
manner, combinatorial explosion of the search space is in-
evitable. For example, approximately a hundred of flags for
performance tuning are available in the GNU compiler col-
lection (GCC) [11], which forces us to explore an extremely
large search space of possible candidates.

Thus, it is crucial to learn from the experience of perfor-
mance tuning experts in a way that enables us to improve
the performance of an application based on how they im-
proved the performance of similar applications. In our pre-
vious work [14], we addressed the problem of extracting facts
from performance tuning histories of computational kernels.
As a proof-of-concept, we have created a database of facts,
or factbase, extracted from performance tuning histories of
several kernels of a few real world scientific applications. We
extracted facts about loop transformations performed on an
original kernel by comparing it with its variants made by
experts, and stored the facts into a factbase together with
a set of source code metrics and performance profiling data
as the evidence.

Our long-term goal is to create a sufficient factbase that



can be searched for promising optimization patterns, or even
for patches, that match a given kernel. However, it is not
an easy task to collect performance tuning examples suit-
able for factbase construction. In general, detailed histories
of performance tuning of a large-scale scientific application
tend to be lost, since the tuning process is temporary and in-
dependent of the development of the application. We should
select tuning examples according to some criteria in order
to efficiently expand a factbase.

Classifying kernels into several classes and examining the
distribution of the classes over computation-intensive appli-
cations would guide us in seeking out performance tuning
instances that should be supplied to the factbase preferen-
tially. HPC Challenge Benchmark [8] characterizes com-
putational kernels based on spatial and temporal locality in
memory access streams and provides 7 representative bench-
marks for high-performance computing (HPC) systems. In-
stead of traditional benchmarks, Asanov́ıc and others [1] in-
troduced 13 Dwarfs, each of which is an algorithmic method
that captures a pattern of computation and communication.
However, to the best of the authors’ knowledge, there is no
large-scale survey in terms of the distribution of such classes
over computation-intensive applications.

In this study, we introduce another set of kernel classes
and explore a thousand computation-intensive applications
in terms of the distribution of the kernel classes. The set
of classes was proposed to estimate expected efficiency of
kernels and has been used for drawing up plans of the per-
formance tuning of scientific applications running on the K
computer [23].

In order to statistically estimate the distribution of the
kernel classes, 100 loops were randomly sampled from the
1000 applications and then manually classified by experi-
enced performance engineers. The experts rely on static
information extracted from the source code in addition to
their experience and intuition. To support the classifica-
tion task, we developed a web application that shows static
features obtained by analyzing the source code.

In addition to the loop classification, we also discuss the
correlation between static features of a kernel and its class
by making use of the source code features and the manual
classification results. We make an attempt to construct a
binary classifier for predicting kernels and a multi-class clas-
sifier for predicting kernel classes by means of a supervised
machine learning algorithm.

In summary, the aim of the study is two-fold:

• to reveal the distribution of the kernel classes over a
thousand compute-intensive applications, and

• to examine the possibility of determining the class of
a kernel only from static source code features of the
kernel.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the set of kernel classes. Then, static
source code features that give supplementary information
for manual kernel classification are presented in Section 3.
After an overview of the analysis we carried out for extract-
ing the source code features is given in Section 4, Section 5
details experiments conducted for a large-scale exploration
of computation-intensive applications and for an examina-
tion of kernel and kernel class prediction. After related work
and a few limitations are reviewed in Sections 6 and 7, Sec-
tion 8 concludes the work.
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Figure 1: Kernel classes

2. CLASSIFYING LOOP KERNELS
To improve the performance of a scientific application,

particular pieces of code, called computational kernels, or
kernels for short, are extracted from it first. Kernels are
identified by inspecting source code and/or by finding per-
formance bottlenecks [20]. In this study, we focus on single-
processor performance of a loop kernel, or a code region
composed of one or several nested loops. We focus on the
following in particular:

1. setting a performance target for each kernel, and

2. developing an optimization strategy for each kernel.

Once kernels are identified, a performance target is set and
plans of optimization are drawn up for each kernel.

2.1 Classes of Computational Kernels
For the purpose of facilitating the steps above, we consider

the kernel classes M1 through M6 shown in Figure 1. Each
of the classes is related to expected efficiency, or a percent-
age of the theoretical peak performance (floating-point oper-
ations per second), and a typical tuning strategy. In the fig-
ure, the classes are arranged in descending order of expected
efficiency, where rough estimates (%) for SPARC64VIIIfx,
used in the K computer, are shown. Although efficiency
percentages of M5/M6 kernels can be estimated based on
the roofline model [22], typical values are shown in the fig-
ure. Note that the order of the classes should be similar
for other modern scalar processors, although individual per-
centages may vary.

A tuning strategy is composed of the following basic steps,
where examples of the relevant optimization techniques are
shown in brackets for each step.

P Hiding memory access latency. [enabling prefetching]

L Exploiting data in cache lines. [array merging, data re-
ordering]

C Improving temporal locality of memory accesses. [loop
blocking]

I Improving instruction scheduling. [loop fission (to simplify
loop bodies)]

O Utilizing fused multiply-add (FMA) and single instruc-
tion multiple data (SIMD) operations. [loop interchange
(to place SIMD vectorizable loops innermost)]

Note that Figure 1 also shows the priority of these steps for
each class except M1 in the figure. For example, “P,L>C”
means that data prefetching and exploitation of cache lines



have priority over improving temporal locality. For further
details on performing these steps, see the book [2] by Bailey
and others for instance. The strategy for M1 is simply using
DGEMM library as explained later in the next section.

2.2 Classification of Kernels
A computation that a piece of kernel code describes can be

characterized primarily by the amount of bytes of memory
(RAM) accesses relative to floating-point operations, B/F
for short, essentially required by the computation regardless
of individual implementations. Note that we can also use
multiplicative inverse of B/F, or operational intensity, used
in the roofline model as long as it is used consistently.

In general, computations that require low B/F can be ex-
ecuted more efficiently than those that require high B/F,
since the former can take advantage of cache memories.
Thus, kernels are roughly divided into two classes: low-B/F
kernels and high-B/F kernels. Then, each class is further
divided into 4 (M1–4) or 2 (M5–6) classes based on the ex-
pected efficiency and the relevant optimization strategy.

We distinguish throughout the rest of the paper abstract
B/F, denoted by B/F , essentially required by the compu-
tation that a kernel describes, from concrete B/F, denoted
by B/F, calculated by syntactically counting memory ref-
erences and floating-point operations in kernel source code.
As a rule of thumb, we expect less than 0.5 for low B/F and
more than 1.5 for high B/F .

2.2.1 Low B/F Kernels
Some kernels that require low B/F are essentially matrix-

matrix multiplication and hence can be replaced with calls
to an efficient matrix-matrix multiplication subroutine like
DGEMM. They are classified as M1, where typical applica-
tions include first principles calculations based on density
functional theory (DFT).

Otherwise, instead of DGEMM, cache blocking techniques
may be effective in reducing the volume of memory traffic.
If this is the case, the bodies of the loop kernels tend to be
relatively simple in terms of size, the number of branching
statements, and so on. They belong to M3 if they are sten-
cil code and to M2 otherwise. M3 kernels have been rarely
seen, while they can be executed relatively efficiently. Some
particular high-order accuracy stencil computations are typ-
ical applications of M3 kernels. M2 kernels are used in, for
example, classical molecular dynamics (MD) simulations of
Coulomb interaction and n-body simulations of gravitational
interaction.

If cache blocking is not effective, loop kernels tend to have
relatively complex loop bodies and are considered to be in
M4, where complex memory access patterns hinder efficient
instruction scheduling and SIMD. Typical applications of
M4 kernels include physical components of climate model
simulations and plasma simulations based on particle-in-cell
method.

2.2.2 High B/F Kernels
Kernels that require high B/F are simply divided into two

classes depending on whether they have indirect array ref-
erences or not. If a kernel does not contain indirect array
references, it is in M5. M5 kernels are often seen in standard
stencil computations. Typical applications include dynami-
cal components of climate model simulations, fluid dynamics
simulations, and earthquake simulations.

Feature Judgment
1 AR (Array References) M1–4 | M5–6
2 FOp (Floating-point Ops) (by B/F)
3 St (Statements)
4 Br (Branches)
5 Ca (Procedure Calls) M2–3 | M4
6 MAR (Max. Array Rank) (by complexity)
7 MLD (Max. Loop Depth)
8 IAR (Indirect Array References) M5 | M6
9 MLL (Max. Loop Nest Level)
10 MFL (Max. Fusible Loops) kernel | non-kernel
11 MMA (Max. Mergeable Arrays)

Table 1: Syntactic features of a loop

Kernels in the last class, M6, use indirect array references.
Typical applications include structural simulations and fluid
dynamics simulations based on finite element method (FEM).

3. STATIC FEATURES OF LOOPS

3.1 Loop Features
As explained in Section 2, we set a performance target for

each kernel at an early stage of performance tuning. This is
done by inferring the kernel class; we rely in part on syntac-
tic features extracted from the source code for the inference.
Table 1 presents our proposal for a set of source code fea-
tures we consult to narrow down the candidate classes.

The first two features are for estimating B/F of a kernel
and hence used for distinguishing M1–4 from M5–6. Note
that B/F of a loop may differ from its B/F , since multiple
implementations are possible for a computation. A kernel
classification task requires comprehensive interpretation of
data including B/F values, comment lines, and supplemental
documents. The third through seventh are for measuring
the complexity of a loop body. They are used to distinguish
M2–3 and M4. The eighth feature distinguishes M5 and
M6. The last three are mainly used for judging whether a
loop is a kernel or not. MLL represents maximum loop nest
level where a loop is placed in the call tree, which reflects
the order of the number of potential iterations. MFL and
MMA are from the perspective of specific code optimization
patterns: loop fusion and array merging. Both patterns
in a loop are easily identified syntactically and can be an
indication of a kernel.

Loop fusion is a loop transformation which combines two
adjacent loops that have the same iteration range into a sin-
gle loop. It can improve temporal and spatial localities of
data references. Array merging is a data layout optimiza-
tion technique that merges two or more arrays of the same
size into a single array. It can improve the spatial locality
between elements of different arrays.

3.2 Estimation Schemes for B/F
As mentioned above, B/F plays a primary role in the ker-

nel class identification. Actual B/F of a specific code region
is usually measured dynamically by profiling or tracing. Al-
though we cannot statically obtain cache miss rate and hence
actual B/F in general, we statically estimate B/F based on
heuristics that are derived from the experience of perfor-
mance tuning.

While syntactically counting floating-point operations is
relatively straightforward, estimating the volume of memory



traffic is far from easy, as it would require cache behavior
prediction. Instead of employing complex cache models, we
simply count the unique signatures of array references found
in a loop. We provide three estimation schemes, ES0–2, each
of which has its own method of calculating the signature
of an array reference. All of the schemes assume that the
abstract syntax tree (AST) of an array reference is available.

ES0 For the signature of an array reference a(x), the scheme
calculates hash value of the AST of a(x).

ES1 For the signature of an array reference a(x1...), the
scheme calculates hash value of the AST of a(•...) derived
from the original by anonymizing the first dimension.

ES2 In addition to ES1, for the signature of an array ref-
erence a(x1, op(x2, c)...), the scheme calculates hash value
of the AST of a(•, x2...) derived from the original by mod-
ifying it in a way that the addition or subtraction (op) of
constant c are ignored at the second dimension.

ES0 only assumes that data is shared in cache among syn-
tactically identical array references. ES1 assumes that the
data referenced by the array references that differ only by
the first dimension are located in the same cache block. ES2
assumes that the data referenced by the array references that
differ only by the first dimension and by additions/subtrac-
tions of constants at the second dimension are located in
the same cache block. For example, we assume by ES2 that
a(i1,j,k) and a(i2,j+1,k) are located in the same cache block.

1 integer m
2 integer n1,n2,n3
3 double precision u(n1,n2,n3),v(n1,n2,n3), r(n1,n2,n3),a(0:3)
4 integer i3 , i2 , i1
5 double precision u1(m), u2(m)
6 do i3=2,n3−1
7 do i2=2,n2−1
8 do i1=1,n1
9 u1( i1 ) = u(i1 , i2−1,i3) + u(i1 , i2+1,i3)&

10 + u(i1 , i2 , i3−1) + u(i1, i2 , i3+1)
11 u2( i1 ) = u(i1 , i2−1,i3−1) + u(i1, i2+1,i3−1)&
12 + u(i1 , i2−1,i3+1) + u(i1, i2+1,i3+1)
13 enddo
14 do i1=2,n1−1
15 r( i1 , i2 , i3 ) = v(i1 , i2 , i3)&
16 − a(0) ∗ u( i1 , i2 , i3)&
17 − a(2) ∗ ( u2( i1 ) + u1(i1−1) + u1(i1+1) )&
18 − a(3) ∗ ( u2( i1−1) + u2(i1+1) )
19 enddo
20 enddo
21 enddo

Listing 1: A loop kernel

Suppose that we are estimating B/F’s for a loop kernel
shown in Listing 1 taken from MG (Multi-Grid), which is a
component of NPB1. The kernel has 15 floating-point opera-
tions. The volume of memory accesses is different according
to estimation scheme. By ES0, we count all occurrences of
the array references, that is, 3 stores and 18 + 3 loads (in
the case of SPARC64VIIIfx, also a load is issued for an array
reference at the left hand side of an assignment). Thus, the
B/F (ES0) is estimated to be 8 ∗ 21/15 = 11.2. We count by
ES1 a store at line 15 as well as 2, 2, 2, 2, 2, and 1 loads at
lines 9, 10, 11, 12, 15, and 16, respectively. Thus, the B/F
(ES1) is estimated to be 8 ∗ 12/15 = 6.4. By ES2, we count
a store at line 15 as well as 1, 2, and 2 loads at lines 9, 10,

1http://www.nas.nasa.gov/publications/npb.html

and 15, respectively. Thus, B/F (ES2) is estimated to be
8 ∗ 6/15 = 3.2.

4. ANALYZING THOUSANDS OF FORTRAN
APPLICATIONS

For the purpose of investigating the distribution of kernel
classes across thousands of computation-intensive applica-
tions, we have developed a tool that is composed of a For-
tran parser and a factbase. A factbase is filled with facts
about the ASTs and the semantic information extracted by
the parser. Source code features are obtained by querying
the factbase.

4.1 Parsing for Source Code Survey
Extracting features of loop kernels from source code re-

quires an understanding of the code’s semantics instead of
simple string pattern matching. The most basic requirement
is to parse it [5] to obtain its AST. If we employ ordinary
compiler frontends for parsing source code, we have to build
applications. In order to parse tens of million lines of source
code from thousands of Fortran applications in reasonable
time, we would have to overcome the following obstacles that
hinder the development of automated analysis.

Building applications By searching the root directories
of 2000 repositories tagged with “language:FORTRAN”
hosted on GitHub, we found that approximately 800 of the
root directories contain Makefile or its variation which
suggests the use of “make” command. We also found that
other 100 root directories contain CMakeLists.txt which
suggests the use of “cmake” command, while we could not
identify how to build for the rest of the repositories.

Specifying configuration options By observing several
of the repositories in more detail, we have noticed that
quite a few of the applications use preprocessor direc-
tives such as #ifdef for adapting to different compila-
tion/computing environments. For example, WRF (the
Weather Research & Forecasting model)2 has hundreds of
#ifdef variables. Obviously, it is not practical to handle
the whole possible combinations of such variables.

Covering language variants Since Fortran is one of the
longest-lived programming languages, there exist several
standards incompatible with each other. Moreover, some
applications depend on vendor-specific language exten-
sions or dialects, which would require us to purchase a
number of commercial compilers.

Preparing external libraries Without the help of a pack-
age management system, we have to manually install the
required external libraries.

To cope with the situation, we employ a dedicated Fortran
parser that we have developed for the previous work [14].
The parser is based on the following major standards: FOR-
TRAN77, Fortran90, Fortran95, Fortran2003, and Fortran2008.
It is also capable of handling the following.

Varieties of dialects and language extensions
The parser is capable of parsing dialects and language
extensions made locally by compiler vendors such as IBM,
PGI, and Intel.

2http://www.wrf-model.org/



Directives It can also directly parse directives/constructs
of the C preprocessor, OpenMP3, OpenACC4, OCL (Fu-
jitsu), XLF (IBM), and DIR/DEC (Intel).

Partial failure It provides keep-on-parsing mode since we
made use of Menhir5, a LR(1) parser generator, with error
recovery function enabled to build the core of the parser.

Incomplete program fragments It is also capable of pars-
ing incomplete program fragments such as sequences of
statements, which are typically included in other source
files.

By virtue of the unusual features explained above, we can
parse application programs without hooking the build pro-
cess of the applications, which means that we can parse
source files in any order without taking care of the depen-
dencies among them. Instead, some dependencies caused
by INCLUDE lines, #include directives, and USE state-
ments may hinder the parser from determining types of some
syntactic entities. As a result, AST nodes such as array
elements, substrings, function references, or structure con-
structors may be left ambiguous. For example, since both
an array access and a function reference are written in the
same form like a(x), the type of a is required to disambiguate
a(x).

The parser has been intensively tested for numerous appli-
cations. The number of tested source files amount to more
than 20,000, the source lines of code (blank lines and com-
ment lines excluded) more than 6,600,000, and the number
of AST nodes more than 62,000,000. Although about 6% of
the AST nodes are left ambiguous by our parser, we could
disambiguate them later by resolving dangling references in
a factbase.

4.2 Source Code Facts and Ontologies
As mentioned in Section 4.1, our parser requires deferred

resolution of dangling references or ambiguous symbols. More-
over, a loop classification task requires call trees to obtain
maximum loop nest level (MLL) as seen in Section 3. Thus,
we need a database for storing facts extracted from multiple
source files by the parser. Feature extraction is performed
later by querying the database.

As the database queries may contain syntactic AST pat-
terns and/or call graph patterns, it is natural to use tree/
graph databases rather than conventional relational databases.
We use RDF (Resource Description Framework)6 store for
the databases. Instead of rigid database schemas, RDF
stores require more flexible vocabularies, or ontologies. An
ontology defines hierarchies of concepts such as “a do-stmt
is a statement” and allows us to describe database queries
concisely. We do not have to describe all kinds of statements
when referring to “statement” in a query, for example.

A fact about AST and semantic information extracted by
the parser is described as a triple of subject, predicate (also
called property), and object following RDF. Both subject
and object may be source code entities such as files, func-
tions/subroutines, and statements. A predicate denotes a
binary relation between a pair of entities or between an en-
tity and its attribute. In the latter case, objects may be

3http://openmp.org/
4http://openacc.org/
5http://cristal.inria.fr/˜fpottier/menhir/
6http://www.w3.org/RDF/

Figure 2: Classes in ontologies (excerpts)

literals. For example, (e, name, "foo") represents a fact that
an entity e has a name foo. Conceptual classes of entities
and predicates such as “name” above are specified by ontolo-
gies. Ontologies define concepts and relationships used for
describing facts. We have designed the following ontologies
in the OWL ontology language7.

SRC A core ontology for source code entities independent
of specific programming languages.

FORTRAN An ontology for Fortran languages that de-
fines the classes of Fortran entities based on specifications
such as FORTRAN77, Fortran90, and other dialects.

In OWL, a class is defined as a subclass of owl:Thing. We
disambiguate the names of conceptual classes by prefixing
namespaces to the names like owl:Thing or src:Entity. We
use namespaces listed in the following table throughout the
rest of the paper.

Prefix Meaning

xsd: XML Schema Datatypes
rdf: Resource Description Framework
rdfs: RDF Schema
owl: OWL Web Ontology Language
src: Core source code entity
f: Fortran source code entity

Figure 2 illustrates the hierarchy of conceptual classes in
the ontologies. SRC defines classes including src:TextEntity
for source code entities represented as texts. FORTRAN
defines classes for Fortran entities as subclasses of f:Entity,
which in turn is a subclass of src:TextEntity.

In addition to the classes above, we also have defined pred-
icates for each ontology. There exist two types of predicates
in OWL: object property, which is a relation between in-
stances of conceptual classes, and datatype property, which
is a relation between instances and RDF literals or possibly
values of XML schema datatypes8. A predicate is defined as
a subproperty of owl:ObjectProperty or owl:DatatypeProperty.

Excerpts of the predicates in SRC are listed in Table 2.
The first five predicates are object properties and the rest is
a datatype property. A predicate src:inFile is a subproperty
of src:containedIn. The domain and the range of a predicate
are also specified. Note that the predicates in SRC include

7http://www.w3.org/standards/techs/owl#w3c all
8http://www.w3.org/XML/Schema/



Predicate Domain Range

src:parent src:Entity src:Entity
src:children src:Entity rdf:List
src:containedIn src:Entity src:Entity
` src:inFile src:Entity src:File
src:startPosition src:Entity src:Position
src:line src:Position xsd:nonNegativeInteger

Table 2: Predicates in source code ontology

Predicate Domain Range

f:inProgramUnit f:Entity f:ProgramUnit
` f:inModule f:Entity f:Module
f:loopControl f:DoConstruct f:LoopControl
f:name f:Entity rdfs:Literal

Table 3: Predicates in Fortran ontology (excerpts)

src:parent and src:children. They define parent-children re-
lationships in terms of hierarchical structures such as di-
rectory trees and ASTs. Table 3 gives excerpts from the
predicates defined in FORTRAN . The first three predicates
are object properties and the last one is a datatype property.
A predicate f:inModule is a subproperty of f:inProgramUnit.
The domain and the range of a predicate are also speci-
fied. Since f:Module is a subclass of f:ProgramUnit, a fact
(e, f:inModule, p) entails (e, f:inProgramUnit, p).

4.3 Factbase Query for Feature Extraction
In order to search factbases for loop features, we write

queries for the patterns in SPARQL9. SPARQL is a stan-
dard query language for RDF. Roughly speaking, SPARQL
is an extension of SQL with graph patterns described by a
set of triples with query variables. For example, consider
the following query that will enumerate names of all main
programs in the factbase, where identifiers prefixed by “?”
denote query variables.

SELECT DISTINCT ?name WHERE {
?prog a f :MainProgram ;

f :name ?name .
}

This query instructs the RDF store to find fact graphs match-
ing the pattern

f:MainProgram
rdf:type←−−−−− ?prog

f:name−−−−→ ?name

and report values for specified variables. The query contains
a graph pattern in the WHERE clause. A graph pattern is
essentially a set of triples written in the format

subject predicate object .

that may contain abbreviation symbol “a” for rdf:type that is
used to specify a conceptual class of an entity. Consecutive
triples that share a subject can also be written as

subject predicate object ;
...

...
predicate object .

Note that predicates and ontology classes are prefixed. Pre-
fix bindings that are placed in the head of a query are omit-
ted for brevity.

9http://www.w3.org/TR/sparql11-query/

program
use m
integer i
i = x(42)
end

2

% 4
4

4
4

44

44

Figure 3: Fact graph for ambiguous reference x(42)

4.3.1 Deferred Reference Resolution
As mentioned in Section 4.1, our parser may yield ambigu-

ous AST nodes due to dangling references. The dangling ref-
erences are however easily resolved by querying the factbase
augmented by inserting f:refersTo facts. This is achieved by
the following SPARQL Update10 snippet

INSERT {
?ent f : refersTo ?provider .
}
WHERE {
?provider f : provides ?ext .
?ent f : requires ?ext .
}

that adds f:refersTo facts that link f:provides facts to f:requires
facts, which are also generated by the parser. Suppose that
we have a program shown in Figure 3 that contains ambigu-
ous reference x(42). According to the RDF data model, a
set of facts form a directed graph, where each triple (s, p, o)

is represented by a graph fragment s
p−→ o. By parsing the

fragment, we obtain a set of facts that corresponds to the
fact graph illustrated in Figure 3, where ext:x and ext:m%x
denote possible external names that may be required by x.
Then the ambiguous x(42) will be resolved to an array ele-
ment if module m provides array x, or to a function reference
if m provides function x. Otherwise, x may be defined else-
where at the top level. If both of the external names are
defined, ext:m%x should precede based on the scoping rule.

4.3.2 Feature Extraction
The loop features explained in Section 3 are obtained by

querying the factbase. As an example, we consider the num-
ber of floating-point operations (FOp). The query shown in
Listing 2 counts distinct (sub-)expressions in a loop relying
on hash values of the sub-ASTs.

OPTIONAL clause at lines 5 through 26 specifies optional
parts of the graph pattern. In the optional match, either
the optional graph pattern matches a graph, thereby vari-
ables ?loop and ?nfop in the pattern are bound to solu-
tions, or the variables are left null. The subquery at lines
6 through 25 calculate aggregate value COUNT(DISTINCT
?h) for each ?loop specified by GROUP BY. Each FILTER
clause limits solutions to the ones satisfying the condition:
logical and concatenation operators are filtered out at line
13, and the solutions are further limited at lines 18 through
24 to the ones that the operands are real-literal-constant or
expressions containing variables of floating-point type such
as REAL. A SPARQL property path src:parent+ is used at
line 16 for specifying a path of one or more occurrences of
src:parent.

10https://www.w3.org/TR/sparql11-update/



1 SELECT DISTINCT ?loop ?nfop WHERE {
2 ?loop a f :DoConstruct ;
3 f : inProgramUnit ?pu .
4

5 OPTIONAL {
6 SELECT ?loop (COUNT(DISTINCT ?h) AS ?nfop)
7 WHERE {
8 ?fop a f : IntrinsicOperator ;
9 src : treeDigest ?h ;

10 a ?fop cat ;
11 f : inDoConstruct ?loop .
12

13 FILTER (?fop cat NOT IN (f:Not, f:And, f:Or, f :Concat))
14

15 ?opr a f :Expr ;
16 src :parent+ ?fop .
17

18 FILTER (EXISTS { ?opr a f:RealLiteralConstant } ||
19 EXISTS {
20 ?opr f : declarator ?dtor .
21 ?dtor a f : Declarator ;
22 f :declarationTypeSpec ?tspec .
23 ?tspec a f :FloatingPointType .
24 })
25 } GROUP BY ?loop
26 }
27 }

Listing 2: Query for counting floating-point ops

5. EXPERIMENTS
In this section, we report on our experiment conducted on

loops in a thousand Fortran applications. All experiments
described in the rest of this section were performed on a
workstation with an 8-core Intel Xeon processor (3.0 GHz)
with 64GB RAM.

5.1 Surveying Loops Across Applications

5.1.1 Analyzing Fortran Applications on GitHub
We have cloned approximately 2000 popular repositories

tagged with “language:FORTRAN” hosted on GitHub. We
evaluated the popularity of repositories based on the number
of “stars” they have. Among the cloned repositories, 1180
were selected based on the occurrence of keywords such as
“simulation” or those indicating the use of OpenMP, Ope-
nACC, MPI to filter out irrelevant applications. Then by
parsing the source code contained in the repositories, we ex-
tracted facts about the loops that are reachable from main
programs and then finally selected 175 963 loops from 1020
repositories based on the occurrences of non-trivial arrays
and floating-point operations. More precisely, we selected
the loops that have non-zero B/F by ES2. It took approxi-
mately 10 hours to extract the source code facts from 1,180
repositories (58M source lines of code, 220K files), 24 hours
to create a factbase of the facts, and 37 hours to extract the
loop features.

Table 4 gives the statistics of the loop features: the quar-
tiles, the means, and the standard deviations, where the suf-
fixes 0, 1, and 2 for AR, IAR, and BF indicate the estimation
schemes ES0, ES1, and ES2, respectively. The histograms
of the features over the 175,963 loops are shown in Figure 4.
The values of St, AR0, FOp, IAR0, Br, and Ca are shown
up to 100 to magnify the distribution. Nevertheless, they
still cover more than 95% of the samples. Similarly, those

Feat. Min. 25% Med. 75% Max. Mean ± S.D.
AR0 1 5 8 16 1199 15.49 ± 30.01
AR1 1 2 4 7 739 6.33 ± 12.15
AR2 1 2 3 6 739 6.04 ± 11.72
FOp 1 2 6 16 5326 21.87 ± 65.26
St 2 5 9 20 2820 22.67 ± 52.72
Br 0 0 0 2 794 2.30 ± 7.96
Ca 0 0 1 4 1550 4.32 ± 14.64
MAR 1 2 2 2 7 2.29 ± 0.74
MLD 1 1 2 3 18 2.12 ± 1.19
IAR0 0 0 0 0 463 0.45 ± 4.05
IAR1 0 0 0 0 150 0.22 ± 2.11
IAR2 0 0 0 0 232 0.21 ± 1.80
MLL 0 0 2 4 29 2.92 ± 3.26
MFL 0 0 1 1 109 1.06 ± 1.86
MMA 1 2 2 4 162 3.71 ± 4.59
BF0 0.05 5.65 11.64 24.00 2856.0 18.92 ± 29.24
BF1 0.01 2.00 5.33 12.00 1248.0 9.60 ± 15.04
BF2 0.01 2.00 4.80 12.00 1248.0 9.34 ± 14.67

Table 4: Statistics of loop features (quartiles, mean,
and standard deviation)

of BF0, BF1, and BF2 are shown up to 60.0. We omit AR1,
AR2, IAR1, and IAR2 since they are quite similar to AR0
or IAR0.

The distributions look like skew-normal distributions ex-
cept those of BF0, BF1, and BF2 in that they have strange
spikes at regular intervals of 4 or 8. We can observe similar
spikes at a cycle of 1.0 in the distribution of the quotients
of two positive integers as shown in Figure 5. Note that
B/F ratio is the quotient of integers, that is, the number
of transferred bytes and the number of floating-point opera-
tions. Since the number of the bytes depends on the type of
transferred data, the cycle is multiplied by 4 or 8, which are
the sizes for REAL or DOUBLE PRECISION, respectively.

5.1.2 Manual Classification of Sampled Loops
From the set of loops, 100 loops were randomly sampled

and then manually classified into the six classes by Terai
(junior performance engineer, 5 years of experience) and Mi-
nami (expert performance engineer, 30 years of experience).
In addition to knowledge of computer architectures, compil-
ers, programming languages and numerical algorithms, the
task requires the ability to understand what kind of compu-
tation (e.g. stencil code) a given loop implements by inspect-
ing the source code and by consulting reference materials if
needed.

In order to support classifying the loops, we developed a
web application that shows them the sampled loops and re-
ceives the classification results. A snapshot of the web appli-
cation is shown in Figure 6, where a sampled loop decorated
with loop features such as estimated B/F is highlighted over
the outline of the AST and the call tree of the entire applica-
tion. The experts performed the classification task based on
the criteria explained in Section 2.1 consulting the feature
values and the source code. The results were submitted to
another database through the class selection menu.

5.1.3 Results
Table 5 and Figure 7 show the distribution of kernel classes

and 95% confidence intervals (in parentheses and by error
bars, respectively) for each expert. They indicate that M5
kernels are in the majority, accounting for approximately
60% (95% confidence interval: 50%–70%) of the sampled
kernels. It should be also noted that“OtherKernel” is second
to M5 and accounts for a relatively large fraction. Some



Terai Minami
Nonkernel 0.36 (0.27–0.45) 0.23 (0.15–0.31)

M1 0.05 (0.01–0.09) 0.05 (0.01–0.09)
M2 0.01 (0.0–0.03) 0.09 (0.03–0.15)
M3 0.01 (0.0–0.03) 0.00 (n/a)
M4 0.03 (0.0–0.06) 0.02 (0.0–0.05)
M5 0.39 (0.29–0.49) 0.44 (0.34–0.54)
M6 0.03 (0.0–0.06) 0.03 (0.0–0.06)

OtherKernel 0.12 (0.06–0.18) 0.14 (0.07–0.21)

Table 5: Classification results

kernels were judged to be OtherKernel due to the lack of
information such as source code of external libraries, while
others since they are (part of) test programs.

As mentioned in Section 3, our classes of computational
kernels are closely related to B/F, that is, M1–4 kernels
require low B/F , while M5–6 kernels high. Figure 8 shows
how average B/F’s are distributed over classes identified by
the junior expert, Terai (left) and the senior expert, Minami
(right). We can see that average B/F’s for M5 and M6 are
higher than those of M3 and M4. It should be noted that
average B/F’s for M1 and M2 are relatively high, though
both classes require low B/F by definition. This is because
both experts inspected the loops qualitatively regardless of
the B/F relying on the comment lines or their expertise in
numerical algorithms.

5.2 Predicting Loop Kernels
This section explains how we can predict loop kernels for a

given application by means of the classification results and
statistical classification techniques. We rely on supervised
learning to classify a loop according to whether it is a ker-
nel or not. Supervised learning is a machine learning tech-
nique that requires a set of examples called training set to
construct predictive models. In this case, an example is com-
posed of a set of loop features and a kernel class. We employ
the Minami’s classification results for the training set. We
represent a set of source code features as an n-dimensional
vector of numerical values, called feature vector. This means
that we characterize a code fragment simply by n attributes.

A training set is a set of examples

{(x, c)|x ∈ Rn, c ∈ {NonKernel,Kernel}},

where x and c are a feature vector and a binomial class, re-
spectively. For example, (x,NonKernel) means a loop char-
acterized by x is not a kernel. By applying a classification
algorithm we obtain a classification function p ∈ P : Rn →
{NonKernel,Kernel} that predicts c from x.

From the features mentioned in Section 3, we selected the
following seven attributes by analyzing their correlation with
the class (kernel or not) in order to maximize the classifi-
cation accuracy: MLL, MLD, MMA, MFL, IAR0, Ca, and
BF0, where IAR0 and BF0 denote the number of indirect
array references and B/F both of which are calculated by
ES0, respectively.

We employed C-SVC (C-Support Vector Classification) in
LIBSVM [6] from a data mining library called scikit-learn11

to construct a predictive model from the training set. The
parameters were chosen following a cookbook [15], that is,
C = 32, kernel=RBF (Radial Basis Function), and γ = 8.
It took 0.4 seconds to construct the model.

11http://scikit-learn.org/

Classification Accuracy: 81.00% (100 examples)

True Kernel True NonKernel Prec.
Pred. Kernel 73 16 82.02%

Pred. NonKernel 3 8 72.73%
Recall 96.05% 33.33%

Table 6: Evaluation of loop kernel prediction

5.2.1 Evaluation of Loop Kernel Prediction Model
The result of 20-fold cross validation of the model is sum-

marized in Table 6, where precision (abbreviated by prec.)
means the proportion of true positives among instances clas-
sified as positive, recall means the proportion of true pos-
itives among all positive instances, and classification accu-
racy means the proportion of correctly classified examples.

Except for disappointing recall of non-kernel prediction,
all scores look promising. The result indicates the corre-
lation between static features of a loop and the likelihood
that it is a kernel, although it does not immediately entail
that the classifier predicts kernels with 80% accuracy for
unknown applications.

5.2.2 Predicting Kernel Classes
Although our training set does not have sufficient exam-

ples for each kernel class other than M5, we made an at-
tempt to construct a model for predicting the class of a
given kernel. We employed again LIBSVM as it supports
multi-class classification. A training set is a set of examples
{(x, c)|x ∈ Rn, c ∈ {M1,M2,M4,M5,M6,OtherKernel}},
where x and c are a feature vector and a polynomial class,
respectively. Note that M3 is omitted since the training
set is taken from the Minami’s classification result and also
that the training set is shrunk by filtering out the examples
each of which were classified as non-kernel, hence the size
becomes 76. For constructing a classifier, we selected three
attributes St, Br, and Ca in the same way as the binomial
classifier above. The result of leave-one-out cross validation
of a model by means of C-SVC with C = 16, kernel=RBF,
and γ = 0 is summarized in Table 7. We adopted leave-
one-out since the number of examples are significantly de-
creased. It took less than 1 second to create and to evaluate
the model.

As expected, we could not construct a classifier for distin-
guishing kernel classes since the training set does not have
sufficient examples of kernel classes except M5. Neverthe-
less, the result suggests that a classifier for distinguishing
M5 kernels from the others would be promising and again
indicates the correlation between static features and the like-
lihood of being an M5 kernel.

6. RELATED WORK
There is a large body of empirical studies that surveyed a

considerable amount of source code [17, 7, 12, 13, 18, 10, 9,
19]. We discuss only a few of them due to space limitations.

An empirical study conducted by Knuth [17] is one of the
earliest studies that analyze a number of Fortran programs.
He and his collaborators performed source code analysis on
over 440 programs consist of 250 000 punched cards, each
of which corresponds to a line of code. They counted the
statements in the programs for each statement type (e.g.,
assignment, IF, DO, etc.), calculated the length and the
depth of nesting of 7933 DO-loops, rated the complexity
of 83 304 assignment statements by counting operators (‘+’



Figure 4: Distribution of loop features

Classification Accuracy: 65.79% (76 examples)

True M1 True M2 True M4 True M5 True M6 True OtherKernel Prec.
Pred. M1 2 0 0 0 0 0 100.00%
Pred. M2 0 1 0 0 0 1 50.00%
Pred. M4 0 0 0 0 0 0 0.00%
Pred. M5 3 6 0 40 2 5 71.43%
Pred. M6 0 0 0 0 0 0 0.00%

Pred. OtherKernel 0 2 2 4 1 7 43.75%
Recall 40.00% 11.11% 0.00% 90.91% 0.00% 53.85%

Table 7: Evaluation of kernel class prediction



Figure 5: Distribution of quotients (positive integers
up to 64)

and ‘-’ were counted as 1, ‘*’ was counted as 5, etc.), and so
forth. In addition, they performed run-time analysis on 25
programs randomly selected out of the target programs. To
find hotspots in a program, they counted how many times
each statement in a program was executed by inserting in-
strumentation code into the program. Moreover, based on
the run-time analysis, they identified kernels of randomly
selected 17 programs.

By virtue of technological advances in the past 45 years,
we can analyze 58 million source lines of code from 1020
repositories compared to 250 000 lines from 440 programs.
In addition, we performed elaborated B/F calculations and
conducted experiments in predicting and classifying loop
kernels with a machine learning approach, while their work
simply calculated the number of statements, the length and
depth of loops, the complexity of assignment statements. We
did not, however, conduct run-time analysis in this study un-
like theirs. Our previous work [14] made use of performance
profiling though the number of analyzed projects was very
limited like theirs.

Dyer and others conducted a large-scale empirical study of
31,432 Java projects [10]. The reason why they could study
much more projects than ours is that the number of Fortran
projects found in public repositories is much smaller than
that of Java projects (they analyzed Java projects hosted
on SourceForge, while we used Fortran projects hosted in
GitHub). They focused on analyzing the usage of Java lan-
guage features, while we focused on analyzing characteristics
of loop kernels of Fortran programs. Although the goal of
their work differs from ours, there is one common point;
both works implemented infrastructures for mining source
code repositories.

With the increase of the size of the target and of the com-
plexity of the properties to be analyzed, it becomes harder
to write analysis programs that directly accesses the tar-
get source code repositories. Dyer and others designed and
implemented a domain-specific language (DSL) and its in-
frastructure called Boa [9] for mining source code. With
Boa, users can write analysis programs concisely and effi-
ciently because it automatically obtains data from source
code repositories and prepares data structures that are nec-
essary for simple description of mining tasks. In addition,
Boa is capable of distributing specified mining tasks to a
cluster system automatically, thus users can enjoy the bene-
fit of the cluster without worrying about the details of task
distribution.

On the other hand, we implemented a factbase, which is
a database of facts about ASTs and the semantic informa-
tion obtained by parsing Fortran programs. By writing and
running queries on the factbase, users are able to analyze
simple to complex properties of the source code repositories
stored in the factbase. Regarding distributed processing of
queries, since the database software we utilized in this study
(Virtuoso) is capable of running on a distributed cluster sys-
tem, users should be able to enjoy the benefit of the cluster
for free, though we have not tested distributed processing
on a cluster system yet.

Both of DSL approach and factbase approach have their
own pros and cons. For example, our factbase approach
should be able to handle more complex properties with sim-
pler queries than their DSL approach because our approach
utilizes RDF database with the elaborated query language
SPARQL and rich vocabularies, while their approach uti-
lizes simple data structures derived from ASTs by using the
visitor-pattern. On the other hand, their approach would be
able to process analysis tasks more efficiently than our ap-
proach because Boa employs map-reduce style data process-
ing and its infrastructure utilized Hadoop, which is a highly
scalable and efficient distributed data storage and process-
ing framework. Fortunately, both approaches are orthogonal
to each other, hence it should be feasible and promising to
integrate them.

7. LIMITATIONS
In this study, all repositories are taken only from GitHub.

Of course, we cannot assume that the Fortran applications
hosted on GitHub represent the computation-intensive ap-
plications all over the world. Moreover, there are several
potential perils such as “A repository is not necessarily a
project” in mining repositories on GitHub [16]. Nevertheless,
we have avoided those by carefully filtering the repositories
as explained in Section 5.1. Note that it is also possible that
some computation-intensive loops may be overlooked due to
parsing errors or to the absence of the use of MPI, OpenMP,
or OpenACC.

Due to lack of time, the kernel identification and the kernel
class prediction functions have not been extensively evalu-
ated on loops other than the sampled ones yet. They might
have to be evaluated based on whether they can detect bot-
tlenecks in an application, even though they were made rely-
ing only on manual classification results without measuring
the runtime performance. In general, however, it is a very
time-consuming task. Even preparing proper input data for
the measurement is far from straightforward.

Another consideration is about test programs. Although
11 of the sampled 100 loops were parts of test programs,
we did not exclude them since it is not trivial to identify
test programs. Actually, 7 of the 11 loops were located in
files whose path names did not contain “test” regardless of
capitalization.

8. CONCLUSION
The process of performance tuning is time consuming and

costly even if it is carried out automatically. It is crucial
to share the experience in optimizing similar computational
kernels. In this study, we explored a thousand computation-
intensive applications written in Fortran to reveal the distri-
bution of kernel classes, each of which is related to expected



 

Figure 6: A web application supporting manual loop classification

Figure 7: Classification results

Figure 8: Average B/F over kernel classes (left:Terai,
right:Minami)

efficiency and specific tuning patterns. Such exploration is
a significant step toward the development of computational
kernel identification as well as tuning pattern prediction to
facilitate evidence-based performance tuning.

We constructed a factbase, or a database of source code
facts obtained by parsing the whole source code contained
in the applications. Then we extracted static features of
the loops from the factbase and selected 175 963 of them
based on the occurrence of non-trivial array references and
floating-point operations. To estimate the distribution of the
kernel classes, 100 loops were randomly sampled and then
manually classified by experienced performance engineers12.

The result indicates that 15–45% of the 175 963 loops
are non-kernel loops and that 30–50% belong to a class
of memory-bound kernels such as standard stencil compu-
tations, which require a high ratio of memory accesses to
floating-point operations and hence are difficult to execute
efficiently on modern scalar processors.

In addition to the loop classification, we discussed the
correlation between the static features and the likelihood of
belonging to a kernel class by constructing a binary classi-
fier for identifying loop kernels and a multi-class classifier for
predicting kernel classes, based on the manual classification
data and a machine learning algorithm. The results of cross-
validation of the classifiers indicate the correlation between
static features of a loop and the likelihood of being a kernel,
although the experts inspected the loops qualitatively de-
pending on the information including comment lines as well
as the static features.

Last but not least, the framework we employed for the
experiment is not limited to a single programming language,
a single classification scheme, nor a single repository hosting

12The results of the experimentation with supplementary in-
formation are publicly available at https://github.com/ebt-
hpc/icpe2017



service. It would be possible to analyze applications written
in more popular languages such as Java and C, since we
have parsers for them and can make use of external static
analyzers to extract call graphs. It would also be interesting
to roughly estimate the cost of a given loop based on the
profiling data of randomly sampled loops.
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