
An	Empirical	Study	of	Computation-Intensive	
Loops	for	Identifying	and	Classifying

Loop	Kernels

Masatomo Hashimoto
Masaaki	Terai
Toshiyuki	Maeda
Kazuo	Minami

ICPE2017 126/04/2017

Agenda

• Performance	engineering	of	scientific	applications
– Identifying	source	code	region	(loops)	that	we	should	
optimize

– Estimating	expected	performance	of	the	loops	to	set	
the	goal	of	performance	tuning

• Classifying	loops	according	to	expected	performance

• Empirical	study	of	1020	real	applications
– How	many	loops	should	we	optimize?
– What	efficiency	can	we	expect	from	the	loops?

26/04/2017 ICPE2017 2

Large-Scale Scientific Applications

• Simulate real-world phenomena
• Massively	parallel
• Running	on supercomputers

– E.g.	the	K	computer
• 11.28	PFLOPS	peak	performance
• 705,024	SPARC64	2GHz	cores	(864	racks)
• 1.41	PiB memory	(2GiB/core)
• 10GiBx2	bandwidth	interconnect

• Written	in	Fortran,	C++,	…

ICPE2017 3

©Fujitsu	&	RIKEN	AICS

26/04/2017

©NIMS&UCL ©UT-Heart ©U-Tokyo

Improving	Performance	of	Applications

• Essential	for	scientific	progress
– More	efficiency,	more	scientific	results

• Simulated	time/resolution,	accuracy	of	model

• Requires	human	intervention
– Identifying	loops	to	be	tuned

• Computational	kernel

– Changing	compiler	opts	and/or	transforming	loops

ICPE2017 426/04/2017

Computational	Kernel

• (Nested)	loop(s)	in	a	subprogram
– Array	references	+	floating-point	operations

• E.g.

26/04/2017 ICPE2017 5

integer m, n1, n2, n3, i1, i2, i3
double precision u(n1, n2, n3), v(n1, n2, n3), r(n1, n2, n3), a(0:3), u1(m), u2(m)
do i3=2, n3−1
do i2=2, n2−1
do i1=1, n1
u1(i1) = u(i1, i2−1,i3) + u(i1, i2+1, i3) + u(i1, i2 , i3−1) + u(i1, i2 , i3+1)
u2(i1) = u(i1, i2−1,i3−1) + u(i1, i2+1, i3−1) + u(i1, i2−1, i3+1) + u(i1, i2+1, i3+1)
enddo
do i1=2,n1−1
r(i1, i2, i3) = v(i1, i2, i3) − a(0) * u(i1, i2 ,i3)&

− a(2) * (u2(i1) + u1(i1−1) + u1(i1+1))&
− a(3) * (u2(i1 – 1) + u2(i1 + 1))

enddo
enddo
enddo From	Multi-Grid	(NAS	Parallel	Benchmark)

Hurdles	in	Performance	Tuning

• Apps	are	programmed	by	scientists	and tuned	
by	performance	engineers
– Comprehending	scientists’	code	is	painful

• Identification	of	algorithms	and	kernels

• Combinatorial	explosion	of	search	space
– Compiler	options

• E.g.	GCC	has	100	performance	related	options

– Loop	transformations	and	their	parameters
• E.g.	unrolling,	blocking,	fusion,	fission,	…

ICPE2017 626/04/2017

Learning	from	Performance	Engineers

• Predicting	good	loop	transformation
– Studied	in	our	previous	work	for	given	
computational	kernels	[MSR2015]

• Classification	of	loops
– Kernel or	non-kernel
– Six	kernel	classes	(groups	of	similar	kernels)

• For	estimating	target	performance/efficiency
– Similar	kernel,	similar	efficiency

26/04/2017 ICPE2017 7

Kernel	Classes

26/04/2017 ICPE2017 8

>	0.8

<	0.1

Class Traits Typical	Applications Efficiency

M1 Matrix-matrix
multiplication

Density functional	theory

M2 Simple	loop	body Molecular	dynamics

M3 Simple	loop	body	+	
stencil

Particular high-order
accuracy	stencil

M4 Complex	loop	body Climate	model	(physical),	
plasma	(particle-in-cell)

M5 Stencil Climate model	(dynamical),
fluid	dynamics,	earthquake

M6 Stencil
(indirect	array	reference)

Fluid dynamics
(finite	element	method)

>	0.8

<	0.1

𝑅	(𝐹𝑙𝑜𝑝 𝑠⁄)
𝑅+,-.	(𝐹𝑙𝑜𝑝 𝑠⁄)

(SPARC64VIIIfx)

Learning	Kernel	Classification	from	
Performance	Engineers

• Selected	175,963	loops	from	1020	Fortran	
applications on	GitHub
– Use	of	OpenMP,	MPI,	and/or	OpenACC

• Manually	classified	100	loops	that	are	randomly	
sampled	from	the	loops
– By	experienced	performance	engineers

• Code	comprehension	assistance
• Statistically	estimated	distribution	of	classes	over	
the	175K	loops

• Created	predictive	models	based	on	the	manual	
classification	results

26/04/2017 ICPE2017 9

CCA:	Code	Comprehension	Assistance

• Fortran	parser
– Standards:	F77,	F90,	F95,	F2003,	F2008
– Vendor-specific	extensions/directives

• Fujitsu,	GNU,	IBM,	Intel,	PGI,	OpenMP,	OpenACC
– Out-of-order	parsing

• No	need	to	hook	build	process
• Outline	view	of	call-tree

– With	code	metrics
• Topic	analysis	of	source	code
• Source	code	viewer
• Available	at	https://github.com/ebt-hpc/cca

ICPE2017 1026/04/2017

Distribution	of	Loops

26/04/2017 ICPE2017 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Kernel

NonKernel Junior	Eng.	(5	years)
Expert	Eng.	(30	years)
95%	confidence	interval

Distribution	of	Kernel	Classes

26/04/2017 ICPE2017 12

M1
M2
M3
M4
M5
M6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Junior	Eng.	(5	years)

Expert	Eng.	(30	years)
95%	confidence	interval

Predicting	Kernel	Class	of	a	Loop

• Constructing	predictive	model
– Feature	vector	of	loop	→ kernel	class	(or	non-kernel)

• Machine	learning	algo.:	SVC	(Support	Vector	Classification)
• Feature	vector:	static loop	metrics

– E.g.	num of	calls,	num of	indirect	array	refs
• Training	data	set:	manual	classification	result	(100	samples)

• Predicting	whether	a	loop	is	a	kernel	or	not
– Classification	accuracy:	0.81	(20-fold	cross	validation)

• Predicting	whether	a	kernel	is	M5	or	not
– Classification	accuracy:	0.94	(20-fold	cross	validation)

26/04/2017 ICPE2017 13

Summary
• Performance	tuning	of	scientific	applications

– Essential	and	demanding
• Learning	from	performance	tuning	experts

– Classification	of	loop	kernels	into	six	classes
• Estimating	target	performance/efficiency

• Estimating	distribution	of	kernel	classes
– 175K	loops	from	1K	Fortran	applications	on	GitHub

• 70-85%	are	kernels
• 35-55%	are	M5	kernels (stencil,	<15%	expected	efficiency)

• Correlation	between	static	loop	features	and	kernel	classes
– Machine	learning	(SVC)	+	training	set	(100	sampled	loops)

• Classification	accuracy	0.81	(Is	given	loop	a	kernel	or	not?)
• Classification	accuracy	0.94	(Is	given	kernel	M5	or	not?)

26/04/2017 ICPE2017 14

THANK	YOU	FOR	YOUR	ATTENTION

n Raw	results	of	the	experiments
p https://github.com/ebt-hpc/icpe2017

n Outlines	of	1020	applications
p https://ngse.riken.jp/outline

n Our	tool	(CCA/EBT)
p https://github.com/ebt-hpc/cca

ICPE2017 1526/04/2017

