An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels

<u>Masatomo Hashimoto</u> Masaaki Terai Toshiyuki Maeda Kazuo Minami

Agenda

- Performance engineering of scientific applications
 - Identifying source code region (loops) that we should optimize
 - Estimating expected performance of the loops to set the goal of performance tuning
 - Classifying loops according to expected performance
- Empirical study of 1020 real applications
 - How many loops should we optimize?
 - What efficiency can we expect from the loops?

Large-Scale Scientific Applications

- Simulate real-world phenomena
- Massively parallel
- Running on supercomputers
 - E.g. the K computer 👼
 - 11.28 PFLOPS peak performance
 - 705,024 SPARC64 2GHz cores (864 racks)
 - 1.41 PiB memory (2GiB/core)
 - 10GiBx2 bandwidth interconnect
- Written in Fortran, C++, ...

©NIMS&UCL ©UT-Heart ©U-Tokyo

©Fujitsu & RIKEN AICS

Improving Performance of Applications

- Essential for scientific progress
 - More efficiency, more scientific results
 - Simulated time/resolution, accuracy of model
- Requires human intervention
 - Identifying loops to be tuned
 - Computational kernel

Changing compiler opts and/or transforming loops

Computational Kernel

- (Nested) loop(s) in a subprogram
 - Array references + floating-point operations

• E.g.

integer m, n1, n2, n3, i1, i2, i3 double precision u(n1, n2, n3), v(n1, n2, n3), r(n1, n2, n3), a(0:3), u1(m), u2(m) **do** i3=2, n3-1 **do** i2=2, n2-1 **do** i1=1. n1 u1(i1) = u(i1, i2-1, i3) + u(i1, i2+1, i3) + u(i1, i2, i3-1) + u(i1, i2, i3+1) $u^{(i1)} = u^{(i1)} (i2-1,i3-1) + u^{(i1)} (i2+1,i3-1) + u^{(i1)} (i2-1,i3+1) + u^{(i1)} (i2+1,i3+1)$ enddo **do** i1=2.n1-1 $\mathbf{r}(i1, i2, i3) = \mathbf{v}(i1, i2, i3) - \mathbf{a}(0) * \mathbf{u}(i1, i2, i3) \&$ -a(2) * (u2(i1) + u1(i1-1) + u1(i1+1)) &-a(3)*(u2(i1-1)+u2(i1+1))enddo enddo From Multi-Grid (NAS Parallel Benchmark) enddo

Hurdles in Performance Tuning

- Apps are programmed by *scientists* and tuned by *performance engineers*
 - Comprehending scientists' code is painful
 - Identification of algorithms and kernels
- Combinatorial explosion of search space
 - Compiler options
 - E.g. GCC has 100 performance related options
 - Loop transformations and their parameters
 - E.g. unrolling, blocking, fusion, fission, ...

Learning from Performance Engineers

- Predicting good loop transformation
 - Studied in our previous work for given computational kernels [MSR2015]
- Classification of loops
 - Kernel or non-kernel
 - Six kernel classes (groups of similar kernels)
 - For estimating target performance/efficiency
 - Similar kernel, similar efficiency

Kernel Classes

Class	Traits	Typical Applications	Efficiency
M1	Matrix-matrix multiplication	Density functional theory	> 0.8
M2	Simple loop body	Molecular dynamics	$\frac{R(Flop/s)}{D(Flop(s))}$
M3	Simple loop body + stencil	Particular high-order accuracy stencil	R _{peak} (Flop/S)
M4	Complex loop body	Climate model (physical), plasma (particle-in-cell)	
M5	Stencil	Climate model (dynamical), fluid dynamics, earthquake	
M6	Stencil (indirect array reference)	Fluid dynamics (finite element method)	< 0.1

(SPARC64VIIIfx)

Learning Kernel Classification from Performance Engineers

- Selected 175,963 loops from <u>1020 Fortran</u> <u>applications</u> on GitHub
 - Use of OpenMP, MPI, and/or OpenACC
- Manually classified 100 loops that are randomly sampled from the loops
 - By experienced performance engineers
 - Code comprehension assistance
- Statistically estimated distribution of classes over the 175K loops
- Created predictive models based on the manual classification results

CCA: Code Comprehension Assistance

- Fortran parser
 - Standards: F77, F90, F95, F2003, F2008
 - Vendor-specific extensions/directives
 - Fujitsu, GNU, IBM, Intel, PGI, OpenMP, OpenACC
 - Out-of-order parsing
 - No need to hook build process
- Outline view of call-tree
 - With code metrics
- Topic analysis of source code
- Source code viewer
- Available at https://github.com/ebt-hpc/cca

Distribution of Loops

Distribution of Kernel Classes

Predicting Kernel Class of a Loop

- Constructing predictive model
 - Feature vector of loop \rightarrow kernel class (or non-kernel)
 - Machine learning algo.: SVC (Support Vector Classification)
 - Feature vector: *static* loop metrics
 - E.g. num of calls, num of indirect array refs
 - Training data set: manual classification result (100 samples)
- Predicting whether a loop is a kernel or not
 - Classification accuracy: 0.81 (20-fold cross validation)
- Predicting whether a kernel is M5 or not
 - Classification accuracy: 0.94 (20-fold cross validation)

Summary

- Performance tuning of scientific applications
 - Essential and demanding
- Learning from performance tuning experts
 - Classification of loop kernels into six classes
 - Estimating target performance/efficiency
- Estimating distribution of kernel classes
 - 175K loops from 1K Fortran applications on GitHub
 - 70-85% are kernels
 - 35-55% are *M5 kernels* (stencil, <15% expected efficiency)
- Correlation between static loop features and kernel classes
 - Machine learning (SVC) + training set (100 sampled loops)
 - Classification accuracy 0.81 (Is given loop a kernel or not?)
 - Classification accuracy 0.94 (Is given kernel M5 or not?)

THANK YOU FOR YOUR ATTENTION

- Raw results of the experiments
 - https://github.com/ebt-hpc/icpe2017
- Outlines of 1020 applications
 - https://ngse.riken.jp/outline
- Our tool (CCA/EBT)
 - https://github.com/ebt-hpc/cca