An Empirical Study of Computation-Intensive
Loops for Identifying and Classifying
Loop Kernels

Masatomo Hashimoto Ol e
Masaaki Terai Yn AICS Compuational Science

Toshiyuki Maeda — -
eE X CIT =
Kazuo Mlnaml CHIBA INSTITUTE OF TECHNOLOGY I? Lab

26/04/2017 ICPE2017

Agenda

* Performance engineering of scientific applications

— ldentifying source code region (loops) that we should
optimize

— Estimating expected performance of the loops to set
the goal of performance tuning

 Classifying loops according to expected performance

* Empirical study of 1020 real applications
— How many loops should we optimize?
— What efficiency can we expect from the loops?

Large-Scale Scientific Applications

» Simulate real-world phenomena 22888
* Massively parallel

 Running on supercomputers
— E.g. the K computer gfsoo

TTTTTTT

* 11.28 PFLOPS peak performance @Fujitsu.KENA.cs
e 705,024 SPARC64 2GHz cores (864 racks)
* 1.41 PiB memory (2GiB/core) = Fortran

m C+

e 10GiBx2 bandwidth interconnect «c rorran

Others

* Written in Fortran, c++, ... i &

mC

26/04/2017 ICPE2017 3

Improving Performance of Applications

* Essential for scientific progress

— More efficiency, more scientific results

* Simulated time/resolution, accuracy of model

* Requires human intervention

— ldentifying loops to be tuned % T ﬁ : gi;g T
* Computational kernel ARRiauis

— Changing compiler opts and/or transforming loops

Computational Kernel

* (Nested) loop(s) in a subprogram

— Array references + floating-point operations

* E.g.

26/04/2017

integer m, n1, n2, n3, i1, i2, i3
double precision u(n1, n2, n3), v(n1, n2, n3), r(n1, n2, n3), a(0:3), u1(m), u2(m)
do i3=2, n3-1
do i2=2, n2-1
doi1=1, n1
ul(i1) = u(i1, i2-1,i3) + u(i1, i2+1, i3) + u(i1, i2 , i3—-1) + u(i1, i2 , i3+1)
u2(i1) = u(i1, i2-1,i3-1) + u(i1, i2+1,i3-1) + u(i1, i2-1, i3+1) + u(i1, i2+1, i3+1)
enddo
do i1=2,n1-1
r(i1, 2, i3) = v(i1, i2, i3) = a(0) * u(i1, i2 ,i3)&
=a(2)* (u2(i1) + ul(i1-1) + u1(i1+1))&
=a(3)* (u2(i1-1)+u2(@1+1))

enddo
enddo :
enddo From Multi-Grid (NAS Parallel Benchmark)

ICPE2017

Hurdles in Performance Tuning

* Apps are programmed by scientists and tuned
by performance engineers ‘?
— Comprehending scientists’ code is painful

* |dentification of algorithms and kernels

 Combinatorial explosion of search space
— Compiler options

* E.g. GCC has 100 performance related options ’

— Loop transformations and their parameters

e E.g. unrolling, blocking, fusion, fission, ...

Learning from Performance Engineers

* Predicting good loop transformation

— Studied in our previous work for given
computational kernels [MSR2015]

* Classification of loops
— Kernel or non-kernel

— Six kernel classes (groups of similar kernels)
* For estimating target performance/efficiency

— Similar kernel, similar efficiency

Kernel Classes

Typical Applications Efficiency

M 1 Matrix-matrix Density functional theory
multiplication

M 2 Simple loop body Molecular dynamics

M 3 Simple loop body + Particular high-order
stencil accuracy stencil

M4 Complex loop body Climate model (physical),

plasma (particle-in-cell)

M 5 Stencil Climate model (dynamical),
fluid dynamics, earthquake

Stencil Fluid dynamics
(indirect array reference) (finite element method)

(SPARC64VIIIfx)

26/04/2017 ICPE2017 8

Learning Kernel Classification from
Performance Engineers

Selected 175,963 loops from 1020 Fortran
applications on GitHub

— Use of OpenMP, MPI, and/or OpenACC
Manually classified 100 loops that are randomly
sampled from the loops
— By experienced performance engineers
* Code comprehension assistance

Statistically estimated distribution of classes over
the 175K loops

Created predictive models based on the manual
classification results

CCA: Code Comprehension Assistance

* Fortran parser

— Standards: F77, F90, F95, F2003, F2008

— Vendor-specific extensions/directives
e Fujitsu, GNU, IBM, Intel, PGI, OpenMP, OpenACC

— Out-of-order parsing

if(nrep>0)then[cpdrv:cpdrv.F90:456-514] Search:

. [#] ABI_ALLOCATE(ccp,(nn))[cpdrv:cpdrv.F90:533-533]
* No need to hook build process | ' =imemien s s

Other Kemel -

@
411 [@) srccp: do jj=ii+1,nrcp[cpdrv:cpdrv.F90:537-587) et Completed Yet
ot a Kernel
| [®) call critic(aim_dtset,vv,ev,evec,aim_dmaxcs,ires,3)[cpdrv:cpdrv.F90:539-539]
AKernol
- - - [& if (ires==0) then[cpdrv:cpdrv.F90:540-586] M1: Low BIF & for DGEMM
4 (ires==0) then[cpdrv:cpdrv.F90:540-584] M2: Low BIF & for Cache Blocking
- . 542 M3: Low BIF & Simple Loop Body
. - 9] ss=vnorm(rr,0)[cpdrv:cpdrv.F90:542-542] Vit Low B & Commtex Loop body
4+ if (s > maxcpdst) then[cpdrv:cpdrv.FI0:543-546] Ms: High BIF & Direct Aray Ref.
(ss > maxcpdst) then[cpdrv:cpdrv.F90:543-545) g:’h:‘:;f:; & Indirect Array Ref.
[@ do kk=1,3[cpdrvicpdrv.F90:
. . 4 if (n /= 3) then[cpdrvicpdry] @ @ in] togetsu.aics10.riken.jp/ebt/survey/cgi-bin/o ¢ t
— W I t C O e I I l et r I C S if (nn /= 3) then[cpdrv:cp Fortran Loop Survey VAPO_git[d93599f] Sourc... VAPO_git[d93599f][Pre... SourceCodeViewer

2 if (ncep > 0) then[cpdrv:cpdry -
if (ncep > 0) then[cpdrv:d Source Code View
B [@ do kk=1,nceplcpdrv:d]

Precombustion/Mdot/OFShift/ver01/Mdot0_05/CALC/PreCEA/cea/cea2.f 5625L,0C from d93599f
L b [#] dist=vnorm(pom, . —

if (dist < aim_}

sumc + psi(i,j)*Xs(])
sumv + phi(i,3)*Xs(3)

ENDDO

. Vis(Npt) = Vi8(Npt) + BEa(i,i)*X8(i)/sumv
* Source code viewer £ TP
ENDDO

IF (Eql.AND.Nr.GT.0) THEN
C CALCULATE REACTION HEAT CAPACITY AND THERMAL CONDUCTIVITY

* Available at https://github.com/ebt-hpc/cca

Distribution of Loops

Kernel

NonKernel ® Junior Eng. (5 years)

W Expert Eng. (30 years)
I— 95% confidence interval

26/04/2017 ICPE2017

11

Distribution of Kernel Classes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M1 E ® Junior Eng. (5 years)

M2 e i ot |

M3

M4 T

VTR —
Y-

26/04/2017 ICPE2017 12

Predicting Kernel Class of a Loop

* Constructing predictive model

— Feature vector of loop - kernel class (or non-kernel)

 Machine learning algo.: SVC (Support Vector Classification)

* Feature vector: static loop metrics
— E.g. num of calls, num of indirect array refs

* Training data set: manual classification result (100 samples)
* Predicting whether a loop is a kernel or not
— Classification accuracy: 0.81 (20-fold cross validation)

* Predicting whether a kernel is M5 or not
— Classification accuracy: 0.94 (20-fold cross validation)

Summary

Performance tuning of scientific applications
— Essential and demanding

Learning from performance tuning experts
— Classification of loop kernels into six classes
* Estimating target performance/efficiency

Estimating distribution of kernel classes

— 175K loops from 1K Fortran applications on GitHub
* 70-85% are kernels
* 35-55% are M5 kernels (stencil, <15% expected efficiency)

Correlation between static loop features and kernel classes

— Machine learning (SVC) + training set (100 sampled loops)
 Classification accuracy 0.81 (Is given loop a kernel or not?)
 Classification accuracy 0.94 (Is given kernel M5 or not?)

THANK YOU FOR YOUR ATTENTION

B Raw results of the experiments
O https://github.com/ebt-hpc/icpe2017

B Outlines of 1020 applications
O https://ngse.riken.jp/outline

B Our tool (CCA/EBT)
O https://github.com/ebt-hpc/cca

