CCA/EBT: Code Comprehension Assistance Tool
for Evidence-Based Performance Tuning
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Application performance tuning is still quite an art, despite advances in auto-tuning systems < . 48000 ingcg-binfist
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optimization patterns that fit a given computational kernel. Fig. 2: Project view

A project summary view provides the following:
OBJECTIVES e Automatically generated links to the documents whose names contain “README”,
e The result of topic analysis as a ranking of candidate applications (qcd, alps, ...),
e A link to the tree view, and
e Progress of a user’s loop classification performed in the tree view.

e Locating computational kernels
" Predicting location of computational kernels
= Assisting in the manual inspection of source code

e |dentifying optimization patterns applied to computational kernels
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computation-intensive applications hosted on GitHub [6]. mm Fig. 3: Tree view
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3) By using the classification results as training data and e Predicted loop kernels decorated with extracted static features (estimated B/F, ...), and

C-SVCin LIB-SVM [3] from scikit-learn, we constructed a Beranches e Estimation scheme selector for features AR, DAR, IAR, and B/F
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enddo
enddo
do itb=1-ieoxyz,NTH-ieoxyz
do jc = 1,COL
do ic = 1,COL
pe(ic,jc,itb,iz,iy,ix, mu)=He(1l,itb)*SU(ic,jc,1)
+nﬁ(2,itb)*80(ic,jc,2) &
+H real(8) :: He(COLADJ,0:NTH),Ho(COLADJ,0:NTH) [17]
+He(4,itb)*SU(ic,jc,4) &
+He(5,itb)*SU(ic,jc,5) &
+He(6,itb)*SU(ic,jc,6) &
+He(7,itb)*8U(ic,jc,7) &
+He(8,itb)*SU(ic,jc,8)

ESO Data is shared in cache only among syntactically identical array references. E E
ES1 The data referenced by the array references that differ only by the first dimension are
located in the same cache block. (ex. a(i,n) anda(j,n))

ES2 The data referenced by the array references that differ only by the first dimension and by

additions/subtractions of constants at the second dimension are located in the same cache block. E aJ 51 endso
(ex.a(i,n)anda(j,n+l)) 134 | endde

R
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The tool is available at
https://github.com/ebt-hpc/cca Fig. 4: Source code view

Topic Analysis for Source Code
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= Based on 168 papers of scientific applications from several research fields
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Commercial and open-source Fortran analysis tools include the following:
e FORCHECK [2] --- A Fortran source code analyzer and programming aid,
 Photran [7] --- An IDE and refactoring tool for Fortran, and

e CamfFort [8] --- Light-weight verification and transformation tools for Fortran. ACKNOWLEDGMENTS
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