
Application performance tuning is still quite an art, despite advances in auto-tuning systems
[1][9].

EBT (evidence-based performance tuning) [5] aims at helping performance engineers gain and
share evidence of performance improvements to make better decisions.

Long-term goal is to construct a database of facts, or factbase, extracted from performance
tuning histories of computational kernels such that we can search the database for promising
optimization patterns that fit a given computational kernel.

INTRODUCTION

TECHNICAL HIGHLIGHTS

SCREENSHOTS

REFERENCES

1. Basu et al. Intl. Journal of High Performance Compu7ng Applica7ons 2013, 27, 4.
2. Forcheck b.v. hHp://www.forcheck.nl/.
3. Chang & Lin. ACM Transac7ons on Intelligent Systems Technology 2011, 2, 3.
4. Deerwester et al. Journal of the American Society for Informa7on Science 1990, 41, 6.
5. Hashimoto et al. Proc. Intl. Conference on Mining So>ware Repositories. 2015.
6. Hashimoto et al. Proc. Intl. Conference on Performance Engineering. 2017.
7. Johnson et al. hHp://www.eclipse.org/photran/.
8. Orchard & Rice. Proc. Workshop on Refactoring Tools. 2013.
9. Tiwari et al. Intl. Journal of High Perform. Compu7ng Applica7ons 2011, 25, 3.
10. Williams et al. Communica7ons of the ACM, 2009, 52, 4.

ACKNOWLEDGMENTS
This work was supported in part by JSPS KAKENHI Grant Number JP26540031.

Loop Kernel Prediction based on Machine Learning

1) Features were extracted from 175,963 loops from 1000
computation-intensive applications hosted on GitHub [6].
2) 100 were randomly sampled and then manually

classified by experienced performance engineers.
3) By using the classification results as training data and

C-SVC in LIB-SVM [3] from scikit-learn, we constructed a
predictive model.
4) The model achieved 20-fold cross-validated

classification accuracy of 81% [6].

Dedicated Fortran Parser

The parser understands the following.
Specifications: FORTRAN77, Fortran90, Fortran95, Fortran2003, Fortran2008
Dialects: IBM, PGI, Intel
Directives: CPP, OpenMP, OpenACC, OCL(Fujitsu), XLF(IBM), DIR/DEC(Intel)

Schemes for Statically Estimating Volume of Memory Traffic

ES0 Data is shared in cache only among syntactically identical array references.
ES1 The data referenced by the array references that differ only by the first dimension are

located in the same cache block. (ex. a(i,n) and a(j,n))
ES2 The data referenced by the array references that differ only by the first dimension and by

additions/subtractions of constants at the second dimension are located in the same cache block.
(ex. a(i,n) and a(j,n+1))

Topic Analysis for Source Code

• Helping performance engineers understand an application
�Analyzing comments and variable names occurring in the source code

- Examining the topic or research field of the application.
• Constructing a topic model with latent semantic indexing (LSI) [4]
�Based on 168 papers of scientific applications from several research fields

- Quantum chemistry, astrophysics, climate science, ...

†Sokware Technology and AI Research Lab, Chiba Insltute of Technology
*RIKEN Advanced Insltute for Computalonal Science

M. Hashimoto†*, M. Terai*, T. Maeda†, and K. Minami*

CCA/EBT: Code Comprehension Assistance Tool
for Evidence-Based Performance Tuning

Abbrv. Feature
FOp # floating-point operations
St # statements
Br # branches
AR # array references

DAR # direct array references
IAR # indirect array references
B/F Bytes per flop
MLL Maximum loop nest level

A source code view (appears by double-
clicking a tree node) has the following:
• Highlighted array references,
• Quick look of the definitions

(appear on mouse-over),
• The definition of an array reference

(by double-clicking).

A project summary view provides the following:
• Automalcally generated links to the documents whose names contain “README”,
• The result of topic analysis as a ranking of candidate applicalons (qcd, alps, ...),
• A link to the tree view, and
• Progress of a user’s loop classificalon performed in the tree view.

A tree view shows the following:
• Outline of the AST and the call tree of an enlre applicalon,
• Predicted loop kernels decorated with extracted stalc features (eslmated B/F, ...), and
• Eslmalon scheme selector for features AR, DAR, IAR, and B/F
 (suffixes 0, 1, and 2 of them indicate the eslmalon schemes ES0, ES1, and ES2, respeclvely).

 The size of a call tree can be infinite when it contains recursive calls.
A procedure or a funclon appear only at the deepest level of non-recursive calls.

OBJECTIVES

RELATED WORK
Commercial and open-source Fortran analysis tools include the following:
• FORCHECK [2] --- A Fortran source code analyzer and programming aid,
• Photran [7] --- An IDE and refactoring tool for Fortran, and
• CamFort [8] --- Light-weight verificalon and transformalon tools for Fortran.
CCA/EBT is capable of prediclng loop kernels and of parsing 1000 applicalons in a fully
automated way.

Tab. 1: SyntacYc features of a loop

Fig. 4: Source code view

Fig. 3: Tree view

Fig. 2: Project view

Fig. 1: Overview of CCA/EBT

• Localng computalonal kernels
 �Prediclng localon of computalonal kernels
 �Assislng in the manual inspeclon of source code
• Idenlfying oplmizalon paHerns applied to computalonal kernels
• Construclng database of posilve/negalve examples of oplmizalon paHerns

⚠

The tool is available at
hHps://github.com/ebt-hpc/cca

