CCA/EBT: Code Comprehension Assistance Tool
for Evidence-Based Performance Tuning

AR M. Hashimoto™, M. Terai’, T. Maeda®, and K. Minami’

4 Lab
CIT "'Software Technology and Al Research Lab, Chiba Institute of Technology p. © | | B

T * . . . Advanced Institute for
111 [w— RIKEN Advanced Institute for Computational Science AICS computational science

Application performance tuning is still quite an art, despite advances in auto-tuning systems < . 48000 ingcg-binfist
Fortran Tree View Llnks to 10191 i ;-qcd[20171019T104703)(src/ces_qed_so P f
[1][9] . Link to 4 rogress o
. Project(s) README-like tree view loop
UID: anonymous documents classification
EBT (evidence-based performance tuning) [5] aims at helping performance engineers gain and overall Progress: OO | | % |
share evidence of performance improvements to make better decisions. e — Pz oo oo ot
+ GoC/README FS Predicted ct + 042175
* doc/README _origin : :
: . suma proreapy LOPICS Of the ecd 1 0471918
Long-term goal is to construct a database of facts, or factbase, extracted from performance I agplication R
tuning histories of computational kernels such that we can search the database for promising

optimization patterns that fit a given computational kernel. Fig. 2: Project view

A project summary view provides the following:
OBJECTIVES e Automatically generated links to the documents whose names contain “README”,
e The result of topic analysis as a ranking of candidate applications (qcd, alps, ...),
e A link to the tree view, and
e Progress of a user’s loop classification performed in the tree view.

e Locating computational kernels
" Predicting location of computational kernels
= Assisting in the manual inspection of source code

e |dentifying optimization patterns applied to computational kernels

e Constructing database of positive/negative examples of optimization patterns o o i localhost-18000/outline/cgi-binftree Puser=anonymous&proj=cos-qodaver=20171 C o 0 o
. Fortran Tree View } ccs-qed[20171019T104703] Sources ccs-qcd[20171019T104703)[src/ccs_qged_solver_b... SourceCodeViewer l +
ccs-qcd
TECHNICAL HIGHLIGHTS) s
y src/ccs_qced_solver_bench.F90 (764 nodes)
I program ccs_qed_solver_bench[ccs_qed_solver_bench:ccs_qcd_solver_bench.F90:4-284]
5 IE call initset[ccs_qcd_solver_bench:ccs_qcd_solver_bench.F90:49-49]
Fa Ct \ Fa Ct I #ifndef _singlePU[ccs_qcd_solver_bench:ccs_qcd_solver_bench.F90:59-60] L t
E] if (nodeid==0) then[ccs_qgcd_solver_bench:ccs_qcd_solver_bench.F90:63-77] Oop ype
Pa rser — Fa Ct ba se I— Fa Ct A Nna I yze I [] #ifndef _singlePU[ccs_qed_solver_bench:ccs_qed_solver_bench.F90:78-81] C I aSsli f| Ca tl on
' ‘ E call init_u_and_y(ue_t_,uo_t_,ye_t_,yo_t_)[ccs_qcd_solver_bench:ccs_qcd_solver_bench.F90:104-104] m e n u
C a ” Tree J P d t d 4 E} subroutine init_u_and_y(ue_t_,uo_t_,ye_t_,yo_t_)[init_u_and_y:init_u_and_y.h90:1-70]
Source redicte | 1$OMP PARALLEL DO PRIVATE(mu,ix,iy,iz,ieoxyz,itb,ic,jc)[init_u_and_y:init_u_and_y.h90:19-49]
- Kernel { . r Iyl ’ Y r I IJ T —Y' e —Y' .
4 call init_p(pe,po)[init_u_and_y:init_u_and_y.h90:54-54]
Code etrics [
Ra N k| ng J 4. I} subroutine init_p(pe,po)[init_p:init_p.h90:1-209]
. . @) do icad = 1,COLADI[init_p:init_p.h90:34-40]
Ele Systenﬁ-’ TOpIC Ana Iyzer | @) do mu=1,NDIM[init_p:init_p.h90:72-97]
' I$OMP PARALLEL DO PRIVATE(mu,ix,ly,iz,ieoxyz,itb,ictb,ic,jc,ixx,iyy,izz,yr,th,He)[init_p:init_p.h90:98-164]
o . o 4 do mu=1,NDIM[init_p:init_p.h90:99-137]F0Op:96,5t:18,Br:0, ES2 EAR2:15,DAR2:15,IAR2:0,B/F:1.25 [| v Loop Type |
Flg' 1: Ove rview Of CCA/EBT 4 [@) do ix=1,NX[init_p:init_p.h90:100-136] N":‘"Ke'”e
4 [Q] do iy=1,NY[init_p:init_p.h90:101-135]
, [@) do iz=1,NZ[init_p:init_p.h90:102- zg tz: 2;’; i ;"i:nif“::zoa:;:g;g
. . . . ’ @] do i * i :108-113] M4: Low BJF & Cc?mplex Loop Body
Loop Kernel Prediction based on Machine Learning , Lode Estimation [moii-is P st
Predicted loop 5-118] Other Kernel
kernel y [do scheme .h90:120-133] 'gnored
. 4. -132]
1) Features were extracted from 175,963 loops from 1000 Tab. 1: Syntactic features of a loop select_or 122-131]

computation-intensive applications hosted on GitHub [6]. mm Fig. 3: Tree view

Zl) 1(')f(') v(;/ebre randc?mly s;mplfed and then manually FOp # floating-point operations A tree view shows the following:
C1a3SITIEC DY EXPETIENted perormance Engineers. e Outline of the AST and the call tree of an entire application,

: . .. St # statements
3) By using the classification results as training data and e Predicted loop kernels decorated with extracted static features (estimated B/F, ...), and

C-SVCin LIB-SVM [3] from scikit-learn, we constructed a Beranches e Estimation scheme selector for features AR, DAR, IAR, and B/F
predictive model. | | AR # array references (suffixes 0, 1, and 2 of them indicate the estimation schemes ESO, ES1, and ES2, respectively).
4) The model achieved 20-fold cross-validated DAR # direct array references

P o
classification accuracy of 81% [6]. IAR # indirect array references A The size of a call tree can be infinite when it contains recursive calls.

B/F Bytes per flop A procedure or a function appear only at the deepest level of non-recursive calls.

Dedicated Fortran Parser MLL Maximum loop nest level . ererrTTTT—— —
A Sou rce Code VIeW (appea rs by double_ @® ® (] localhost:18000/outline/cgi-bin/ope (4 U 0
. . . Fortran Tree View] ccs-qcd[20171019T10... _ ccs-qed[20171019T1.... SourceCodeViewer -
. ; e s el clicking a tree node) has the following: Source Code View
Ts . p'af!r ation E;SS?RZL; (I): OWIn%o F 95, F 2003, F 2008 * Highlighted array references, i
|?eIC| ications: | , Fortran90, Fortran95, Fortran , Fortran S Btk leals of e & = Friiens : iyiy
D!a ec?: s: 1BM, PG, Inte . I (appear on mouse-over), 0: doiég’-‘i;;%i"i?ii:i’{ﬁ‘.’;i""
Directives: CPP, OpenMP, OpenACC, OCL(Fujitsu), XLF(IBM), DIR/DEC(Intel) e The definition of an array reference o m o e
(by dOUble‘CIiCking). o do;i;:lla;cgl‘ggg;szz.Odo*dlog(dble(tyr(ictb,iz,iy,ix,mu))))
Ml e e
: C L : 12 (R Quick look of [eiz)
Schemes for Statically Estimating Volume of Memory Traffic 1 Essemamiond the array
s PG e definition

enddo
enddo
do itb=1-ieoxyz,NTH-ieoxyz
do jc = 1,COL
do ic = 1,COL
pe(ic,jc,itb,iz,iy,ix, mu)=He(1l,itb)*SU(ic,jc,1)
+nﬁ(2,itb)*80(ic,jc,2) &
+H real(8) :: He(COLADJ,0:NTH),Ho(COLADJ,0:NTH) [17]
+He(4,itb)*SU(ic,jc,4) &
+He(5,itb)*SU(ic,jc,5) &
+He(6,itb)*SU(ic,jc,6) &
+He(7,itb)*8U(ic,jc,7) &
+He(8,itb)*SU(ic,jc,8)

ESO Data is shared in cache only among syntactically identical array references. E E
ES1 The data referenced by the array references that differ only by the first dimension are
located in the same cache block. (ex. a(i,n) anda(j,n))

ES2 The data referenced by the array references that differ only by the first dimension and by

additions/subtractions of constants at the second dimension are located in the same cache block. E aJ 51 endso
(ex.a(i,n)anda(j,n+l)) 134 | endde

R

Close

The tool is available at
https://github.com/ebt-hpc/cca Fig. 4: Source code view

Topic Analysis for Source Code

REFERENCES

e Helping performance engineers understand an application
" Analyzing comments and variable names occurring in the source code
- Examining the topic or research field of the application.

e Constructing a topic model with latent semantic indexing (LSI) [4]
= Based on 168 papers of scientific applications from several research fields

- Quantum chemistry, astrophysics, climate science, ...

Basu et al. Intl. Journal of High Performance Computing Applications 2013, 27, 4.
Forcheck b.v. http://www.forcheck.nl/.

Chang & Lin. ACM Transactions on Intelligent Systems Technology 2011, 2, 3.
Deerwester et al. Journal of the American Society for Information Science 1990, 41, 6.
Hashimoto et al. Proc. Intl. Conference on Mining Software Repositories. 2015.
Hashimoto et al. Proc. Intl. Conference on Performance Engineering. 2017.

Johnson et al. http://www.eclipse.org/photran/.

Orchard & Rice. Proc. Workshop on Refactoring Tools. 2013.

. Tiwari et al. Intl. Journal of High Perform. Computing Applications 2011, 25, 3.

10. Williams et al. Communications of the ACM, 2009, 52, 4.

RELATED WORK

e U R

Commercial and open-source Fortran analysis tools include the following:
e FORCHECK [2] --- A Fortran source code analyzer and programming aid,
 Photran [7] --- An IDE and refactoring tool for Fortran, and

e CamfFort [8] --- Light-weight verification and transformation tools for Fortran. ACKNOWLEDGMENTS

CCA/EBT is capable of predicting loop kernels and of parsing 1000 applications in a fully
automated way.

This work was supported in part by JSPS KAKENHI Grant Number JP26540031.

